

POLY4 AS A SULPHUR SOURCE FOR FRESH MARKET TOMATO PRODUCTION IN BRAZIL

Simone C. Mello; University of São Paulo Robert Meakin and Kiran Pavuluri, Sirius Mineral

Presented by Brad Farbe Sirius Minerals

IMPORTANT NOTICES

This document is produced for information only and not in connection with any specific or proposed offer (the "Offer") of securities in Sirius Minerals Plc (the "Company"). No part of these results constitutes, or shall be taken to constitute, an invitation or inducement to invest in the Company or any other entity, and must not be relied upon in any way in connection with any investment decision.

An investment in the Company or any of its subsidiaries (together, the "Group") involves significant risks, and several risk factors, including, among others, the principal risks and uncertainties as set out on pages 48 to 53 of the Company's 2017 annual report and other risks or uncertainties associated with the Group's business, segments, developments, regulatory approvals, resources, management, financing and, more generally, general economic and business conditions, changes in commodity prices, changes in laws and regulations, taxes, fluctuations in currency exchange rates and other factors, could have a material negative impact on the Company or its subsidiaries' future performance, results and financial standing. This document should not be considered as the giving of investment advice by any member of the Group or any of their respective shareholders, directors, officers, agents, employees or advisers.

Any Securities offered for sale by the Company will not be registered under the U.S. Securities Act of 1933 (the "Securities Act") and may only be offered and sold pursuant to an exemption from, or in a transaction not subject to, such registration requirements and applicable U.S. state securities laws.

Unless otherwise indicated, all sources for industry data and statistics are estimates or forecasts contained in or derived from internal or industry sources believed by the Company to be reliable. Industry data used throughout this document was obtained from independent experts, independent industry publications and other publicly-available information. Although we believe that these sources are reliable, they have not been independently verified, and we do not guarantee the accuracy and completeness of this information.

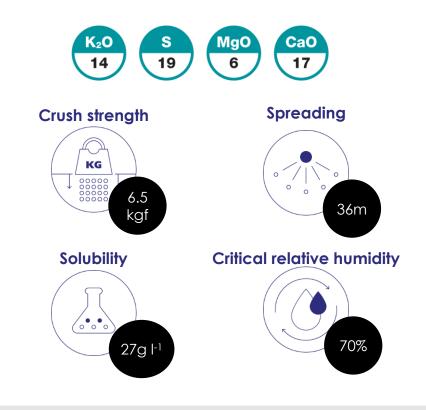
The information and opinions contained in this document are provided as at the date of this document and are subject to amendment without notice. In furnishing this document, no member of the Group undertakes or agrees to any obligation to provide the recipient with access to any additional information or to update this document or to correct any inaccuracies in, or omissions from, this document which may become apparent.

This document contains certain forward-looking statements relating to the business, financial performance and results of the Group and/or the industry in which it operates. Forward-looking statements concern future circumstances and results and other statements that are not historical facts, sometimes identified by the words "believes", "expects", "predicts", "intends", "projects", "plans", "estimates", "aims", "foresees", "anticipates", "targets", and similar expressions. The forward-looking statements contained in this document, including assumptions, opinions and views of the Group or cited from third party sources are solely opinions and forecasts which are uncertain and subject to risks, including that the predictions, forecasts, projections and other forward-looking statements will not be achieved. Any recipient of this document should be aware that a number of important factors could cause actual results to differ materially from the plans, objectives, expectations, estimates and intentions expressed in such forward-looking statements. Such forward looking-statements speak only as of the date on which they are made.

No member of the Group or any of their respective affiliates or any such person's officers, directors or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does any of the foregoing accept any responsibility for the future accuracy of the opinions expressed in this presentation or the actual occurrence of the forecasted developments or undertakes any obligation to review, update or confirm any of them, or to release publicly any revisions to reflect events that occur due to any change in the Group's estimates or to reflect circumstances that arise after the date of this document, except to the extent legally required.

Any statements (including targets, projections or expectations of financial performance) regarding the financial position of the Company, any of its subsidiaries or the Group or their results are not and do not constitute a profit forecast for any period, nor should any statements be interpreted to give any indication of the future results or financial position of the Company, any of its subsidiaries or the Group.

Any statements (including targets, projections or expectations of financial performance) regarding the financial position of the Company, any of its subsidiaries or the Group or their results are not and do not constitute a profit forecast for any period, nor should any statements be interpreted to give any indication of the future results or financial position of the Company, any of its subsidiaries or the Group.



INTRODUCTION TO POLY4 (K_2SO_4 .MgSO₄.2CaSO₄.2H₂O)

POLY4 is the name for polyhalite product from Sirius Minerals. POLY4 is a multinutrient fertilizer that is low in chloride and is certified for organic use.

Sirius Minerals Plc is focused on the construction of its polyhalite project in the United Kingdom. The project involves the construction of a new state-of-the-art mine and associated processing and port infrastructure to produce bulk volumes of POLY4.

https://www.youtube.com/embed /0b_Ubd-6EWM?ecver=2

SIGNIFICANCE OF THE STUDY

- Limited literature
- Discovery of huge deposits of MOP in Canada and ٠ its commercialisation (muriate of potash)
- Zechestein deposit in • North Sea basin containing polyhalite

TIN NO. 449	APRIL, 1992
DIVISION OF	CHEMISTRY
AVAILABILITY TO P IN POLY	LANTS OF POTASH HALITE
RICULTURAL AND MECHAN	NICAL COLLEGE OF TEXAS

lyhalite as a Potassium Fertilizer 1

corn grain vield in the So

K. A. Barbarick

LIBRARY.

- Fraps, G. S., and H. Schmidt. 1932. Availability to plants of potash in Polyhalite, Bulletin No. 449, Texas Agricultural Experiment Station, College Station, Texas.
- Barbarick, K. A. 1991. Polyhalite application to sorghum-sudangrass and leaching in soil columns. Soil Science 151: 159-166.
- Pavuluri K., Z. Malley, M. K. Mzimbiri, T. D. Lewis, and R. Meakin. 2017. Evaluation of polyhalite in comparison to muriate of potash for corn arain yield in the Southern Highlands of Tanzania. African Journal of Agronomy 5: 325-332
- Mello, S., F.J. Pierce, R. Tonhati, G.S. Almeida, D.D. Neto, and K. Pavuluri. 2018a. Potato response to polyhalite as a potassium source fertilizer in Brazil: Yield and Quality. Hortscience. 53:373-379.
- Mello, S., R.N. Tonhati, D.D. Darapuneni, and K. Pavuluri. 2018b. Response of tomato to polyhalite as a multi nutrient fertilizer in south-east Brazil. J. Plant Nutri. in press).

OBJECTIVES

The specific research questions were:

- What is the influence of different S fertilizers on tomato yield and fruit quality?
- How do different S sources affect tomato foliar and fruit nutrient concentrations?
- What is the influence of S source and rate on post-harvest soil nutrient parameters?

MATERIALS AND METHODS

Trial sites: (i) Conchal and (ii) Cerquilho in Sao Paulo State in Brazil

EXPERIMENTAL DESIGN

- Five treatments arranged in randomized complete block design
- Five replications
- Three locations
- Statistical analysis
 - o GENSTAT statistical analysis software
 - Alpha = 0.1
 - Fishers LSD at the 10% significance level
 - Locations were treated as fixed factors

TREATMENT STRUCTURE

Nutrient applied per treatment, kg ha⁻¹

Treatment	K ₂ (S	CaO	MgO	
	Cerquilho	Conchal	All Sites		
Control	0	0	0	0	0
МОР	300	200	0	0	0
POLY4 + MOP	300	200	40	36	13
SOP + MOP	300	200	40	0	0
SOP-M + MOP	300	200	40	0	33
SSP + MOP	300	200	27	40	0

SOIL SAMPLING

- Pre planting -15 soil samples from 0-20 cm depth – prior to tomato planting
- Post-harvest soil samples from each experimental unit

Soil sampling at experimental sites

Soil fertility status of the trial sites

	Soil test								
	рН	Р	К	Са	Mg	SO ₄ -S			
Locations		mg kg ⁻¹							
Cerquilho 1	5.5	10.3	86	254	63	6.6			
Cerquilho 2	5.4	9.7	63	202	52	6.4			
Conchal	5.0	8.4	82	320	117	7.7			

Source: 4000-USP-4024-17

TIME AND METHOD OF FERTILIZER APPLICATION

- Pre-plant
 - $_{\odot}$ 35% of total $K_{2}O$
 - $_{\circ}$ $\,$ 100% of the P_2O_5
 - 20% of total N & incorporated to 20 cm depth.
- The remaining K and N were side-dressed as eight split doses

AGRONOMY

 Cultural practices such as weed, pest and disease control on all plots were followed the guidelines of University of São Paulo, Brazil

Location/agronomy	Cerquilho 1	Cerquilho 2	Conchal 3
Cultivars:	Norte, Clause®	Norte, Clause®	Arendell from Nunhems®
Population:			
Planting dates:	21-03-2017	21-03-2017	02-03-2017

Fertilizers application

Seedling transplanting

Seedlings

10

CROP GROWTH AND LEAF SAMPLING

- Leaves between the third and fourth fruit clusters were collected to determine nutrient concentrations
- K (flame photometric), Ca, Mg (atomic absorption) and S (turbidimetric method by BaSO₄)

HARVESTING AND POST HARVEST FRUIT QUALITY PARAMETERS

- Harvesting at half ripe stage (~ 70 140 DAT)
- Grades: marketable (1A, 2A, and 3A) and unmarketable (fruits with physiological disorders and symptoms caused by pests and diseases) categories.

Fruit quality parameters

- Fruit pH
- Brix
- Ascorbic acid content
- Titratable acidity
- Fruit firmness

YIELD AND YIELD ATTRIBUTES

	Yield (t ha ⁻¹)								
	Total	Marketable	Non- marketable	1A	Size class 2A	3A			
<u>Source</u>									
Control	50.3 B ^y	46.4 B	-	9.0 B	-	-			
MOP	53 AB	48.5 AB	-	11.2 A	-	-			
POLY4	57.1 A	52.9 A	-	12.5 A	-	-			
SOP	55.1 AB	51.2 AB	-	12.0 A	-	-			
SOP-M	56.2 AB	51.7 AB	-	12.5 A	-	-			
SSP	52.9 AB	49.8 AB	-	11.7 A	-	-			
<u>Site</u>									
Cerquilho1	48.4 B	45.1 B	3.7 B	8.8 B	25.4 B	11.3 A			
Cerquilho2	40.6 C	37.1 C	3.4 B	7.4 C	22.4 C	7.5 C			
Conchal3	73.2 A	68.1 A	5.7 A	18.2 A	40.7 A	9.1 B			
<u>p values</u>									
Source	0.0415	0.0436	NS	<0.0001	NS	NS			
Site	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001			
Source*site	NS ^z	NS	0.0458	NS	NS	0.0111			

FRUIT NUMBER AND FRUIT WEIGHT

	Fruit number plant ⁻¹		Average fruit weight, g		
Source	Total	Marketable	Total	Marketable	
Control	45.1 C	35.4 C	-	-	
MOP	48.8 BC	37.5 BC	-	-	
POLY4	53.1 A	41.8 A	-	-	
SOP	50.9 AB	39.4 AB	-	-	
SOP-M	51.8 AB	40.2 AB	-	-	
SSP	50.8 AB	38.7 ABC	-	-	
<u>Site</u>					
Cerquilho1	51.7 B	40.7 A	94 B	110 B	
Cerquilho2	44.1 C	34.1 B	92 B	107 B	
Conchal3	54.4 A	41.7 A	122 A	147A	
p values					
Source	<0.0001	<0.0018	NS	NS	
Site	<0.0002	<0.001	<0.0001	<0.0001	
Source*site	NS	NS	NS	NS	

FOLIAR NUTRIENT CONCENTRATIONS, g kg⁻¹

	N	P	K	Ca	Mg	S
Source						
Control	-	3.5 B	25.3 B	-	-	2.7 B
MOP	-	3.6 B	30.4 A	-	-	2.7 B
POLY4	-	3.6 AB	33.3 A	-	-	3.4 A
SOP	-	3.7 AB	31.8 A	_	-	3.1 AB
SOP-M	-	3.7 AB	32.2 A	-	-	3.1 AB
SSP	-	4.0 A	32.1 A	-	-	3.2 A
<u>Site</u>						
Cerquilho1	38.2 B	4.0 A	_x	9.0 B	3.4 B	3.4 A
Cerquilho2	39.4 B	3.9 A	-	6.5 C	3.3 B	2.7 C
Conchal3	45.3 A	3.1 B	-	10.7 A	4.1 A	3.1B
<u>p values</u>						
Source	NS	0.0116	0.0001	0.0015	NS	0.0008
Site	0.0005	0.0009	NS	<0.0001	<0.0001	<0.0001
Source*site	0.0906	NS	NS	0.0773	NS	NS

FRUIT NUTRIENT CONCENTRATIONS, g kg⁻¹

	Ν	Р	К	Ca	Mg	S
Source						
Control	29.3 B	-	-	-	-	1.83 AB
МОР	29.5 B	-	-	-	-	1.78 B
POLY4	30.4 AB	-	-	-	-	1.93 AB
SOP	32.6 A	-	-	-	-	2.17 A
SOP-M	28.9 B	-	-	-	-	2.05 AB
SSP	31.6 AB	-	-	-	-	1.92 AB
<u>Site</u>						
Cerquilho1	32.1 A	5.9 A	40.9 A	1.8 A	2.4 A	2.26 A
Cerquilho2	31.1 A	5.1 B	37.3 A	1.5 AB	2.6 A	1.91 B
Conchal3	27.9 B	3.9 C	31 B	1.4 B	1.9 B	1.67 B
<u>p values</u>						
Source	<0.0049	NS	NS	NS	NS	0.0465
Site	0.0072	0.0002	0.0005	0.0233	0.0011	0.002
Source*site	NS	0.0922	NS	0.0024	NS	NS

FRUIT QUALITY PARAMETERS

	Ascorbic acid	Titratable acidity	рН	°B	rix
	mg 100 g ⁻¹	mg 100 g ⁻¹		c /	%
<u>Source</u>					
Control	-	0.30 C		-	
MOP	-	0.40 AB		-	-
PH	-	0.35 B		-	-
SOP	-	0.37 AB		-	-
SOP-M	-	0.38 AB		-	-
SSP	-	0.41 A		-	-
<u>Site</u>					
Cerquilho1	10.2 B	0.38 A	4.42 B	-	39.8 A
Cerquilho2	10.8 B	0.38 A	4.42 B	-	42.5 A
Conchal3	14.7 A	0.34 B	4.49 A	-	33.8 B
<u>p values</u>					
Source	NS	<0.0001	NS	NS	NS
Site	0.0005	0.0006	0.0189	NS	0.0002
Source*site	NS	NS	NS	NS	NS

CHANGES TO SOIL FERTILITY

	Changes to soil test values (post-harvest/pre-harvest, mg kg ⁻¹)							
	рН	Р	К	Ca	Mg	S		
Source								
Control	-	-	-	-39 AB	-	-3.3 D		
МОР	-	-	-	-57 AB	-	-2.0 CD		
POLY4	-	-	-	-33 AB	-	1.4 BC		
SOP	-	-	-	-79 B	-	6.2 A		
SOP-M	-	-	-	-63 AB	-	1.0 BC		
SSP	-	-	-	-27 A	-	2.3 B		
<u>Site</u>								
Cerquilho1	-0.91 B	132 A	-	-	-23 A	-		
Cerquilho2	-0.99 B	137 A	-	-	-28 A	-		
Conchal3	-0.71 A	116 B	-	-	-54 B	-		
<u>p values</u>								
Source	NS	NS	<0.0001	0.0414	NS	<0.0001		
Site	0.0571	0.0515	0.0288	NS	0.0289	NS		
Source*site	NS	NS	0.0691	NS	NS	NS		

CHANGES IN SOIL TEST K BY FERTILIZER SOURCE FOR THREE EXPERIMENTAL SITES IN BRAZIL

Location	Control	МОР	РН	SOP	SOP-M	SSP
Cerquilho1	-17 df	164.2 abc	202 abc	160 bc	157.18 bce	152 bce
Cerquilho2	-21 ef	198.6 abc	149 bcd	148 bcd	127.47 cdef	150 abcde
Conchal	-52 f	262.9 abc	350 a	334 abd	179.76 abcde	204 abc

CONCLUSIONS

- Total and marketable yields were higher for PH than the control but all other fertilizers were similar to the control and to POLY4. This result was consistent among the three commercial fields
- The POLY4 treatment had higher fruit numbers than the control and MOP. Yields were highly correlated to fruit number per plant (r=0.84-0.87 suggesting that POLY4 increased fruit set leading to higher yields
- Potassium did increase leaf K, the number of class 1, small fruit (40-50 mm), titratable acidity and soil test K, but not other fruit quality parameters
- Sulphur fertilization increased leaf S. Only the POLY treatment was significantly different to control for foliar S
- Since yields in MOP, SOP, SOP-M and SSP were not different than the control, it did not appear that tomato responded to any single fertilizer nutrient including K, suggesting the response to POLY4 may have been a response to a combination of the S, Ca, and Mg in POLY4

THANK YOU

Any questions please contact:

<u>Brad,farber@siriusminerals.com</u>

siriusminerals.com